Beyond the Expected: Exploring Multiple Myodural Bridges Throughout the Cervical Spine and Their Role in Health and Disease By Tom Meyers (Belgium, Osteopath D.O., Body-centred Stress Coach, Founder of The Reaset Approach and Author of Futurize Yourself and The Futures Effect. Abstract The concept of the myodural bridge has traditionally been limited to the connection between the sub-occipital muscles, the posterior atlantooccipital membrane, and the cervical dura mater. However, new observations suggest that these anatomical connections may extend throughout the entire cervical spine, involving multiple cervical muscles beyond those commonly discussed. This expanded understanding could have significant implications for health, particularly in managing stress-related disorders, chronic neck pain, and cervicogenic headaches. Further research into the presence of multiple myodural bridges at different cervical levels is recommended to confirm their existence and clinical relevance. Their role, particularly in stress-related conditions, may prove to be valuable in the treatment of a wide range of disorders that are currently classified as medically unexplained. Introduction For years, the myodural bridge has been described as a specialised anatomical connection with the dura mater located between the occiput and atlas (C0-C1) and occiput and axis (C0-C2). This relationship has primarily garnered interest in the context of cervicogenic headaches and upper cervical biomechanics. Recent research has also highlighted the crucial role of the posterior atlanto-occipital membrane (PAOM), which serves as a critical anchor for these bridges and merges with the craniocervical dura to stabilise the cervical region. However, during a visit to the Body Worlds exhibition in Amsterdam, osteopath D.O. MSc Tom Meyers observed, while examining plastinated bodies, that these dural connections were not confined to the upper cervical region but appeared to extend throughout the cervical spine, involving other structures that had not previously been associated with myodural bridges. If so, these myodural bridges may have broader clinical relevance than previously thought, particularly, Meyers believes, in the management of stress-related disorders, chronic neck pain, and other neuromusculoskeletal conditions. This discovery calls for further research and may lead to new insights into medically unexplained symptoms, as well as new therapeutic applications. New Anatomical Insights: Extending Beyond the Sub-Occipital Region Beyond the Expected: Multiple Myodural Bridges Throughout the Cervical Spine While the classical view of myodural bridges focuses on their connection to sub-occipital muscles such as the rectus capitis posterior minor and major, as well as the obliquus capitis superior and inferior, it is possible that other neck muscles, such as the semispinalis capitis and multifidus (extending from C2 to C7), also connect directly or indirectly to the dura mater. Furthermore, the posterior atlanto-occipital membrane (PAOM) plays a critical role in this network. Research shows that the PAOM merges with the craniocervical dura, extending to the C3 level, forming a membrane-dura complex that stabilises the cervical dura mater beyond the classical C1-C2 region. It is also possible that the dural bridges observed in the lower neck are not related to muscular structures but to fascial structures or, for example, the ligamentum nuchae, a prominent structure in the cervical spine. The potential direct or indirect influence on dural tension through fascial or ligamentous connections should be further researched or, at the very least, considered in discussions of myodural dynamics, particularly in the lower cervical levels, where traditional myodural bridges might not be as prominent. Why Further Research is Needed for Stress-Related Disorders Stress is a major contributor to musculoskeletal dysfunction, particularly in the cervical region. Prolonged stress causes muscle tension, which, in turn, can affect the function of myodural bridges, potentially leading to symptoms such as headaches, neck pain, and even dizziness. By examining these bridges in the context of stress-related disorders, we could better understand how chronic tension impacts the dura mater and nervous system. Therapeutic approaches such as osteopathic manipulative techniques, The Reaset Approach, and craniosacral therapy could be refined to target these myodural connections, offering patients relief from stress-induced symptoms. Clinical Implications of the Newly Identified Myodural Bridges Cervicogenic Headaches and Migraines With the recognition that myodural bridges are not limited to the C0-C1 region, it becomes clear that cervicogenic headaches and migraines might have a more complex origin involving dural tension across multiple cervical levels. This expanded understanding allows for more precise and effective treatments that address tension and dysfunction along the entire cervical spine. Chronic Neck Pain and Postural Syndromes Chronic neck pain is often associated with muscular imbalances and poor posture, both of which may exacerbate tension in myodural bridges. Recognising their widespread presence throughout the cervical spine suggests that treatments focusing on the entire cervical musculature, rather than just the sub-occipital region, may be more effective in relieving persistent pain. Stress-Related Musculoskeletal Disorders Stress often manifests as tension in the neck and shoulders. With multiple myodural bridges potentially involved in transmitting that tension to the dura mater, understanding how to treat these structures could significantly improve outcomes for patients suffering from stress-related conditions. Manual therapies that release tension in these muscles and bridges may reduce the frequency and severity of stress-induced headaches and neck pain. Potential Role in Long COVID Symptoms Although speculative, it is possible that chronic inflammation and muscle tension seen in Long COVID could affect myodural bridges, particularly given their role in regulating cerebrospinal fluid flow and dural tension. Future research might uncover connections between these structures and the neurological symptoms of Long COVID, such as brain fog, headaches, dizziness/vertigo, altered sensory perception, tinnitus, cervical dizziness, tension-type headache, cervical radiculopathy, restricted range of motion, and occipital neuralgia. Conclusion The discovery that dural bridges extend beyond the known C1-C3 levels and potentially involve all cervical levels challenges the traditional anatomical view. Recognising the possibility of these myodural, or at least ligamentous, bridges existing in the lower segments of the cervical spine opens up new avenues for understanding their role in both health and disease. From cervicogenic headaches to stress-related disorders, these structures may play a crucial role in influencing dural tension and cervical biomechanics. Further research is necessary to explore their full clinical relevance, particularly in managing medically unexplained symptoms and conditions associated with chronic stress. And perhaps, as this observation by Meyers is further validated, these structures might even be referred to in the future as “Meyers Bridges”—it would be a fitting tribute. However, the broader message would be that keen observation is something everyone can engage in, and meaningful contributions to science are not restricted to scientists alone. References Alix, M. E., & Bates, D. K. (1999). A proposed etiology of cervicogenic headache: the neurophysiologic basis and anatomic relationship between the dura mater and the rectus posterior capitis minor muscle. Journal of manipulative and physiological therapeutics, 22(8), 534–539. https://doi.org/10.1016/S0161-4754(99)70006-0 Enix, D. E., Scali, F., & Pontell, M. E. (2014). The cervical myodural bridge, a review of literature and clinical implications. The Journal of the Canadian Chiropractic Association, 58(2), 184–192. Humphreys, B. K., Kenin, S., Hubbard, B. B., & Cramer, G. D. (2003). Investigation of connective tissue attachments to the cervical spinal dura mater. Clinical anatomy (New York, N.Y.), 16(2), 152–159. https://doi.org/10.1002/ca.10109 Humphreys, B. K. (2008). Cervical Dural Attachments: An Anatomic Study. The Journal of Manual & Manipulative Therapy, 16(3), E1-E8. Mitchell, B. S., Humphreys, B. K., & O'Sullivan, E. (1998). Attachments of the ligamentum nuchae to cervical posterior spinal dura and the lateral part of the occipital bone. Journal of manipulative and physiological therapeutics, 21(3), 145–148. Scali, F., Pontell, M. E., Enix, D. E., & Marshall, E. (2011). Histological Analysis of the Rectus Capitis Posterior Minor’s Myodural Bridge. Clinical Anatomy, 24(7), 933-937. Scali, F., Enix, D. E., Pontell, M. E. (2013). The Myodural Bridge: A Review of Literature and Clinical Implications. The Journal of the American Osteopathic Association, 113(8), 623-633. Scali, F., Ohno, A., Enix, D., & Hassan, S. (2022). The Posterior Atlantooccipital Membrane: The Anchor for the Myodural Bridge and Meningovertebral Structures. Cureus, 14(5), e25484. https://doi.org/10.7759/cureus.25484 Song, X., Yu, S. B., Yuan, X. Y., Alam Shah, M. A., Li, C., Chi, Y. Y., Zheng, N., & Sui, H. J. (2024). Evidence for chronic headaches induced by pathological changes of myodural bridge complex. Scientific reports, 14(1), 5285. https://doi.org/10.1038/s41598-024-55069-7 As the body of research grows, and as the clinical significance of the myodural bridges becomes more apparent, it is likely that they will receive greater attention in both medical education and practice. Increasing awareness of these structures could lead to improved diagnostic and therapeutic approaches.
0 Comments
Leave a Reply. |
Archives
September 2024
Categories |